35 TO 55 VOLT INPUT - 8 TO 15 WATT

FEATURES

- Radiation tolerant space DC-DC converter
 - Single event effects (SEE) LET performance to 86 MeV cm²/mg
 - Total ionizing dose (TID) guaranteed per MIL-STD-883 method 1019, radiation hardness assurance (RHA)
 L = 50 krad(Si), R = 100 krad(Si)
 - 50 300 rad(Si)/sec dose rate (Condition A)
- 10 mrad(Si)/sec dose rate (Condition D)
- Operating temperature -55°C to +125°C
- Screened to MIL-PRF-38534 Class H and K
- Input voltage range 35 to 55 volts
- Transient protection 80 volts for 50 ms
- · Fully isolated
- · Fixed high frequency switching
- Inhibit function
- Synchronization input
- · Indefinite short circuit protection
- Undervoltage lockout

DESCRIPTION

The Interpoint[®] SMHF42 Series[™] of 42 volt DC-DC converters offers up to 15 watts of power in a radiation tolerant design. The low profile SMHF42 converters are manufactured in our fully certified and qualified MIL-PRF-38534 Class K production facility and packaged in hermetically sealed steel cases. They are ideal for use in programs requiring high reliability, small size, and high levels of radiation hardness assurance. They are targeted for operation on a 42 volt power bus. The units are capable of withstanding transients up to 80 volts for up to 50 ms.

SCREENING

SMHF42 converters offer screening to Class H or K and radiation hardness assurance (RHA) levels L - 50 krad(Si) or R - 100 krad(Si). Single event effects (SEE) LET performance to 86 MeV cm²/mg. See Table 11 on page 35 for more information.

CONVERTER DESIGN

The SMHF42 converters are switching regulators that use a quasisquare wave, single-ended forward converter design with a constant switching frequency of 500 kHz typical. Isolation between input and output circuits is provided with a transformer in the forward path.

Dual output models maintain cross regulation with tightly coupled output magnetics. Up to 70% of the total output power is available from either output, providing the opposite output is simultaneously carrying 30% of the total output power. Predictable current limit is accomplished by directly monitoring the output load current and limiting the current output above the overload point.

MODELS							
OUTPUT VOLTAGE (V)							
SINGLE	DUAL						
3.3	±5						
5	±7						
5.2	±12						
12	±15						
15							

Feed-forward compensation system provides excellent dynamic response and audio rejection. Audio rejection is typically 50 dB. Typical output voltage response for a 50% to 100% step load transient is as low as 2% with a 100 μ s recovery time.

INHIBIT FUNCTION

An inhibit terminal that can be used to disable internal switching, resulting in no output and very low quiescent input current. The converter is inhibited when the inhibit pin is pulled low. The unit is enabled when the pin, which is internally connected to a pull-up resistor, is left unconnected or is connected to an open-collector gate.

SYNCHRONIZATION

Synchronization allows the user to synchronize the switching frequency of the converter to the frequency of the system clock. This allows the user to adjust the nominal 500 kHz operating frequency to any frequency within the range of 500 kHz to 600 kHz by applying a compatible input of the desired frequency to pin 5.

SHORT CIRCUIT PROTECTION

Short circuit protection is provided by restricting the output current to approximately 140% of the full load output current. The output current is sensed in the secondary stage to provide highly predictable and accurate current limiting, and to eliminate foldback characteristics.

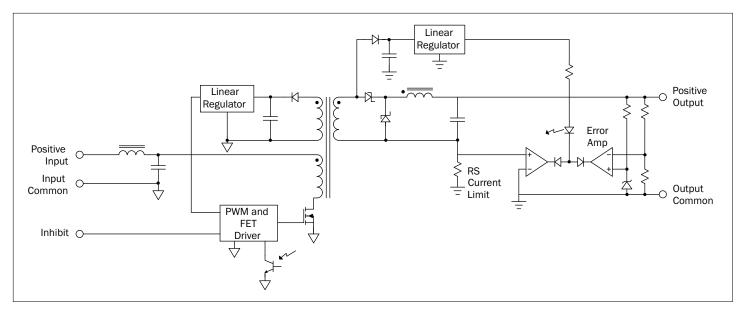
35 TO 55 VOLT INPUT - 8 TO 15 WATT

UNDERVOLTAGE LOCKOUT

Undervoltage lockout prevents the converters from operating below approximately 30 volts input to keep system current levels smooth, especially during initialization or re-start operations.

EXTERNAL EMI FILTER

The Interpoint SFMC28-461[™] EMI filter reduces the input line reflected ripple current of the SMHF42 converters to meet MIL-STD-461C levels of conducted emission (CE03). The maximum input voltage of the SFMC28-461 is 50 volts.


Example EMI plots are Figure 9, Figure 21, Figure 33, Figure 44, Figure 57 and Figure 70.

SPAN VOLTAGE ON DUALS

Dual outputs may be spanned to increase the output voltage. Our duals can also be configured as a single output where the positive output is used as one rail and the negative output is used as the other rail. As an example the positive and negative 15 volt dual can be configured as a single 30 volt output. This can be used as a positive 30 volt output or a negative 30 volt output. In all cases Output Common of the converter is not connected.

If the dual is configured as a positive 30 volt output the negative output would be used as system ground and the positive output would be used as the positive 30 volt output.

The maximum capacitance when using a span voltage on a dual is half the value specified for each output.

35 TO 55 VOLT INPUT - 8 TO 15 WATT

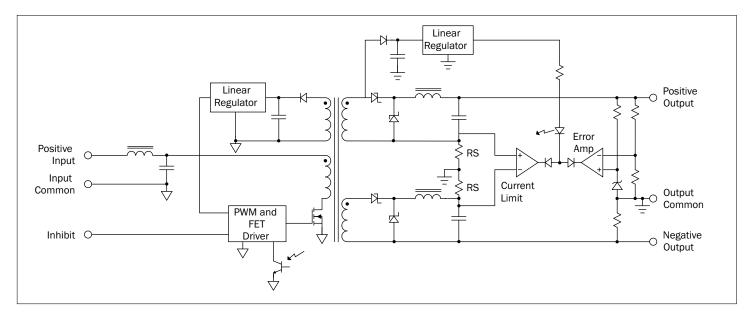


FIGURE 2: SMHF42 DUAL OUTPUT, BLOCK DIAGRAM

35 TO 55 VOLT INPUT - 8 TO 15 WATT

PIN OUT							
Pin	Single Output	Dual Output					
1	Inhibit	Inhibit					
2	No connection	Positive Output					
3	Output Common	Output Common					
4	Positive Output	Negative Output					
5	Sync	Sync					
6	Case Ground	Case Ground					
7	Input Common	Input Common					
8	Positive Input	Positive Input					

TABLE 1: PIN OUT

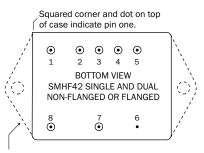

SMD NUMBERS								
STANDARD MICROCIRCUIT DRAWING (SMD)	SMHF42 SIMILAR PART							
5962R1722701KXC	SMHF423R3S/KR							
5962R1722702KXC	SMHF4205S/KR							
5962R1722703KXC	SMHF425R2S/KR							
5962R1722704KXC	SMHF4212S/KR							
5962R1722705KXC	SMHF4215S/KR							
5962R1722801KXC	SMHF4205D/KR							
5962R1722802KXC	SMHF4207D/KR							
5962R1722803KXC	SMHF4212D/KR							
5962R1722804KXC	SMHF4215D/KR							
The SMD numbers shown are for RHA level R, screening level Class K, standard case (X), standard pin seal and non-solder dipped pins (C). For other options please refer to the SMD for the SMD number and the vendor similar number. All SMD numbers are listed on the SMD. For exact specifications for an SMD product, refer to the SMD. SMD can be downloaded from https://landandmaritimeapps.								

TABLE 2: SMD NUMBER CROSS REFERENCE

dla.mil/programs/smcr

PINS NOT IN USE					
Inhibit (pin 1) Leave unconnected					
Sync (pin 5)	Connect to Input Common (pin 7)				

TABLE 3: PINS NOT IN USE

Dotted line outlines flanged package option.

See Figure 80 on page 32 and Figure 81 on page 33 for dimensions.

FIGURE 4: PIN OUT

35 TO 55 VOLT INPUT - 8 TO 15 WATT

MODEL NUMBERING KEY
Base Model <u>SMHF</u> 42 05 <u>S</u> <u>F</u> / <u>K</u> <u>R</u> Input Voltage Output Voltage Number of Outputs (S = single, D = dual) Case Option (Non-flanged case has no designator in this position)
Environmental Screening ———————————————————————————————————

FIGURE 5: MODEL NUMBERING KEY

MODEL NUMBER OPTIONS ¹ To determine the model number enter one option from each category in the form below.										
CATEGORY	Base Model and Input Voltage	Output Voltage ²	Number of Outputs ³	Case Option ⁴	Screening ⁵	RHA ⁶				
		3R3, 05, 5R2, 12, 15	S	(non-flanged, leave blank)	0	0				
OPTIONS	SMHF42	05, 07, 12, 15	D	F (flanged)	н	L				
					к	R				
FILL IN FOR MODEL # ⁷	SMHF42				/					

Notes

1. See Figure 5 above for an example of a model number.

2. Output Voltage: An R indicates a decimal point. 3R3 is 3.3 volts out. The values of 3.3 and 5.2 are only available in single output models.

3. Number of Outputs: S is a single output and D is a dual output

4. Case Options: For the standard case (Figure 80 on page 32) leave the Case Option blank. For the flanged case option (Figure 81 on page 33), insert the letter F in the Case Option position.

5. Screening: A screening level of 0 is a space prototype and is only available with RHA "-" (0). See Table 10 on page 34 and Table 11 on page 35 for more information.

6. RHA: Interpoint model numbers use an "0" in the RHA designator position to indicate the "-" (dash) radiation hardness assurance level of MIL-PRF-38534, which is defined as "no RHA." RHA 0 is only available with screening level 0. See Table 11 on page 35 for more information.

7. If ordering by model number add a "-Q" to request solder dipped leads (SMHF4205S/KR-Q).

TABLE 4: MODEL NUMBER OPTIONS

35 TO 55 VOLT INPUT - 8 TO 15 WATT

SMHF42 SERIES		A	LL MODE	LS			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS		
LEAD SOLDERING TEMPERATURE ¹	10 SECONDS MAX.	-	-	300	°C		
STORAGE TEMPERATURE ¹		-65	_	+150	°C		
CASE OPERATING	FULL POWER	-55	-	+125	°C		
TEMPERATURE	ABSOLUTE ¹	-55	-	+135			
DERATING OUTPUT POWER/CURRENT ¹	LINEARLY	From 10	00% at 12	5°C to 0%	% at 135°C		
ESD RATING ^{1, 2}	MIL-STD-883 METHOD 3015		1000-199	9	v		
MIL-PRF-38534, 3.9.5.8.2	CLASS 1C, T _C = 25°C		1000 100	5	, v		
ISOLATION: INPUT TO OUTPUT, INPUT TO CASE, OUTPUT TO CASE ³	@ 500 VDC, T _C = 25 °C	100	_	_	Megohms		
UNDERVOLTAGE LOCKOUT ¹	V _{IN} , T _C = -55°C TO +125°C	-	30	-	V		
INPUT TO OUTPUT CAPACITANCE ¹	T _C = 25°C	-	60	-	pF		
CURRENT LIMIT ³ T _C = -55°C TO +125°C	% OF FULL LOAD	-	140	-	%		
AUDIO REJECTION ¹	T _C = 25 °C	-	50	-	dB		
SWITCHING FREQUENCY	T _C = -55°C TO +125°C	480	500	620	kHz		
SYNCHRONIZATION	INPUT FREQUENCY	500	_	600	kHz		
T _C = -55°C TO +125°C	DUTY CYCLE ¹	40	-	50	%		
	ACTIVE LOW	-	_	0.8	v		
	ACTIVE HIGH ¹	4.5	-	5.0			
	REFERENCED TO	INPUT COMMON					
	IF NOT USED	CO	NNECT TO	INPUT CO	OMMON		
INHIBIT ACTIVE LOW (OUTPUT DISABLED)	INHIBIT PIN PULLED LOW	-	-	0.8	V		
T _C = -55°C TO +125°C	INHIBIT PIN SOURCE	_	_	1.5	mA		
Do not apply a voltage to the inhibit pin	CURRENT ^{1, 4}			1.0			
	REFERENCED TO	INPUT COMMON			N		
INHIBIT ACTIVE HIGH (OUTPUT ENABLED T _C = -55°C TO +125°C	INHIBIT PIN CONDITION	OPEN COLLECTOR OR UNCONNECTED					
Do not apply a voltage to the inhibit pin	OPEN INHIBIT PIN VOLTAGE ¹	7.5	_	12	V		

TABLE 5: OPERATING CONDITIONS - ALL MODELS, 42 VIN UNLESS OTHERWISE SPECIFIED

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Passes 1000 volts.

3. When testing isolation, input pins are tied together and output pins are tied together. They are tested against each other and against case. Discharge the pins before and after testing.

4. Current limit is defined as the point at which the output voltage decreases by 1%.

Dual outputs: The over-current limit will trigger when the sum of the currents from both outputs reaches 140% (typical value) of the maximum rated "total" current of both outputs.

5. Inhibit current = Vin/35 k ohms.

35 TO 55 VOLT INPUT - 8 TO 15 WATT

SINGLE OUTPUT MODELS		SN	1HF423F	R3S	SI	MHF420	5S	SMHF425R2S			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		3.20	3.30	3.40	4.85	5.00	5.15	5.05	5.20	5.35	V
OUTPUT CURRENT	V _{IN} = 35 TO 55 V	_	-	2.4	-	_	2.4	_	_	2.4	A
OUTPUT POWER	V _{IN} = 35 TO 55 V	0	-	8	0	_	12	0	_	12.5	w
OUTPUT RIPPLE	T _C = 25 ° C	_	5	50	-	5	50	_	5	50	
10 KHZ - 2 MHZ	T _C = -55°C TO +125°C	_	5	50	_	5	50	_	5	50	mV p-p
OUTPUT RIPPLE	T _C = 25 ° C	_	15	80	-	15	80	_	5	80	
10 KHZ - 10 MHZ	T _C = -55°C TO +125°C	_	15	80	-	15	80	_	5	80	mV p-p
LINE REGULATION	V _{IN} = 35 to 55 V	_	1	10	_	1	10	_	1	10	mV
LOAD REGULATION	NO LOAD TO FULL	_	20	50	-	20	50	_	20	50	mV
INPUT VOLTAGE	CONTINUOUS	35	42	55	35	42	55	35	42	55	v
NO LOAD TO FULL	TRANSIENT 50 MS ¹	0	-	80	0	-	80	0	-	80	ľ
INPUT CURRENT	NO LOAD	_	25	50	_	25	40	_	25	40	mA
	INHIBITED	_	6	10	-	6	10	_	6	10	
INPUT RIPPLE CURRENT	10 kHz - 10 MHz	-	-	120	-	-	120	-	-	120	mA p-p
EFFICIENCY	T _C = 25 ° C	68	72	-	73	79	-	73	80	-	%
	T _C = -55°C TO +125°C	65	-	-	70	-	_	70	-	-	%
LOAD FAULT ^{2, 3}	POWER DISSIPATION	_	5	8	-	3.5	8	_	3.5	8	W
SHORT CIRCUIT	RECOVERY ¹	_	7.5	30	-	7.5	30	_	7.5	30	ms
STEP LOAD RESPONSE 3, 4	TRANSIENT	_	±150	±400	-	±150	±400	_	±150	±400	mV pk
50% - 100% - 50%	RECOVERY	_	150	300	_	150	300	_	150	300	μs
STEP LINE RESPONSE 1, 3, 5	TRANSIENT	_	±0.5	±5	-	±0.5	±5	_	±0.5	±5	%
± 2 V STEP TRANSIENT ⁶	RECOVERY	_	150	_	_	100	_	_	100	-	μs
STARTUP ^{7, 3}	DELAY	_	10	25	_	10	25	_	10	25	ms
	OVERSHOOT	_	15	50	_	15	50	_	15	50	mV pk
CAPACITIVE LOAD ¹	T _C = 25°C	_	-	300	-	_	300	_	-	300	μF

TABLE 6: ELECTRICAL CHARACTERISTICS: -55°C TO +125°C CASE, 42 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Indefinite short circuit protection not guaranteed above 125°C (case)

3. Recovery and start-up times are measured from application of the transient or change in condition, to the point at which V_{OUT} is within 1% of final value.

4. Step load transition test is performed at 10 microseconds typical.

5. Step line characterization test is performed at 100 microseconds \pm 20 microseconds..

6. \pm 2 V step transients from Vin 35 to 37 up to 55 and the reverse for 55 to 35.

7. Tested on release from inhibit.

35 TO 55 VOLT INPUT - 8 TO 15 WATT

SINGLE OUTPUT MODELS		S	MHF421	2S	SN	/HF421	ōS	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		11.76	12.00	12.24	14.70	15.00	15.30	V
OUTPUT CURRENT	V _{IN} = 35 TO 55 V	-	_	1.25	_	_	1.00	A
OUTPUT POWER	V _{IN} = 35 TO 55 V	0	_	15	0	_	15	W
OUTPUT RIPPLE	T _C = 25°C	—	15	40	—	10	40	m)/ n n
10 KHZ - 2 MHZ	T _C = -55°C TO +125°C	-	15	40	-	10	40	mV p-p
OUTPUT RIPPLE	$T_{C} = 25 \degree C$	—	15	70	—	40	70	mV p-p
10 KHZ - 10 MHZ	T _C = -55°C TO +125°C	-	15	70	—	40	70	пі р-р
LINE REGULATION	V _{IN} = 35 to 55 V	—	5	20	-	8	30	mV
LOAD REGULATION	NO LOAD TO FULL	-	20	50	—	20	50	mV
INPUT VOLTAGE	CONTINUOUS	35	42	55	35	42	55	v
NO LOAD TO FULL	TRANSIENT 50 MS ¹	0	_	80	0	-	80	
INPUT CURRENT	NO LOAD	-	25	55	_	25	62	mA
	INHIBITED	-	5	10	_	5	10	11// (
INPUT RIPPLE CURRENT	10 kHz - 10 MHz	-	_	120	_	_	120	mA p-p
EFFICIENCY	T _C = 25°C	76	80	_	78	81	—	%
	T _C = -55°C TO +125°C	72	_	-	74	_	—	70
LOAD FAULT ^{2, 3}	POWER DISSIPATION	-	3.5	8	-	3.5	8	W
SHORT CIRCUIT	RECOVERY ¹	_	7.5	30	_	7.5	30	ms
STEP LOAD RESPONSE 3, 4	TRANSIENT	-	±150	±500	_	±200	±500	mV pk
50% - 100% - 50%	RECOVERY	-	50	300	_	50	300	μs
STEP LINE RESPONSE 1, 3, 5	TRANSIENT	_	±0.5	±5	_	±0.5	±5	%
± 2 V STEP TRANSIENT ⁶	RECOVERY	_	150	_	_	150	_	μs
STARTUP 7, 3	DELAY	-	10	25	_	10	25	ms
	OVERSHOOT	_	25	50	_	25	50	mV pk
CAPACITIVE LOAD ¹	T _C = 25 °C	_	-	100	-	_	100	μF

TABLE 7: ELECTRICAL CHARACTERISTICS: -55°C TO +125°C CASE, 42 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Indefinite short circuit protection not guaranteed above 125 °C (case)

3. Recovery and start-up times are measured from application of the transient or change in condition, to the point at which $V_{\rm OUT}$ is within 1% of final value. 4. Step load transition test is performed at 10 microseconds typical.

5. Step line characterization test is performed at 100 microseconds \pm 20 microseconds. 6. \pm 2 V step transients from Vin 35 to 37 up to 55 and the reverse for 55 to 35.

7. Tested on release from inhibit.

35 TO 55 VOLT INPUT - 8 TO 15 WATT

DUAL OUTPUT MODELS		S	MHF420	5D	S	MHF4207	'D	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+V _{OUT}	4.85	5.00	5.15	6.86	7.00	7.14	v
	-V _{OUT}	4.82	5.00	5.18	6.83	7.00	7.18	
OUTPUT CURRENT ²	EITHER OUTPUT	_	±1.2	1.68	-	±0.850	1.190	А
V _{IN} = 35 TO 55 V	TOTAL	_	-	2.4	_	_	1.7	
OUTPUT POWER ²	EITHER OUTPUT	_	±6	8.4	_	±5.95	8.33	w
V _{IN} = 35 TO 55 V	TOTAL	_	-	12	-	_	11.9	
OUTPUT RIPPLE ± V _{OUT}	T _C = 25°C	_	30	95	-	20	95	
10 kHz - 2 MHz	Т _С = -55°С то +125°С	_	30	95	_	20	95	mV p-p
OUTPUT RIPPLE $\pm V_{OUT}$	T _C = 25°C	_	30	110	_	40	110	mV p-p
10 kHz - 10 MHz	Т _С = -55°С то +125°С	_	30	110	_	40	110	
LINE REGULATION ³	+V _{OUT}	_	2	10	_	2	10	
V _{IN} = 35 to 55 V	-V _{OUT}	_	10	100	_	10	100	- mV
LOAD REGULATION ³	+V _{OUT}	_	5	25	_	5	20	mV
NO LOAD TO FULL	-V _{OUT}	_	80	150	_	100	200	
CROSS REGULATION ⁴	EFFECT ON -V _{OUT}	_	-	375	_	-	700	mV
INPUT VOLTAGE	CONTINUOUS	35	42	55	35	42	55	
NO LOAD TO FULL	TRANSIENT 50 MS ¹	_	-	80	_	_	80	V
INPUT CURRENT	NO LOAD	_	25	50	_	25	60	
	INHIBITED	_	6	10	_	6	10	mA
INPUT RIPPLE CURRENT	10 KHZ - 10 MHZ	_	60	120	_	60	120	mA p-p
EFFICIENCY	T _C = 25°C	75	79	_	78	80	-	04
	T _C = -55°C TO +125°C	72	-	_	75	_	-	%
LOAD FAULT ^{5, 6}	POWER DISSIPATION	_	3	6	_	3	6	w
SHORT CIRCUIT	RECOVERY ¹	_	6	30	_	6	30	ms
STEP LOAD RESPONSE 6, 7, 8	TRANSIENT	_	±200	±500	_	±200	±300	mV pk
50% - 100% - 50%	RECOVERY	_	90	400	_	90	120	μs
STEP LINE RESPONSE 1, 6, 9	TRANSIENT	_	±0.5	±5	_	±0.5	±5	%
± 2 V STEP TRANSIENT ¹⁰	RECOVERY	-	100	_	-	120	_	μs
STARTUP ^{6, 11}	DELAY	-	12	25	-	10	25	ms
	OVERSHOOT	0	100	500	-	100	500	mV pk
CAPACITIVE LOAD 1, 12	T _C = 25°C	-	-	47	-	-	10	μF

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Up to 70% of the total output power is available from either output providing the opposite output is simultaneously carrying 30% of the total output power. Each output must carry a minimum of 30% of the total output power in order to maintain regulation on the negative output.

3. Balanced loads.

4. Effect on $-V_{OUT}$ for the following conditions: +P₀ = 50%, -P₀ = 10%; +P₀ = 10%, -P₀ = 50% +P₀ = 70%, -P₀ = 30%; +P₀ = 30%, -P₀ = 70% All conditions are referenced to balanced loads

www.craneae.com/interpoint

5. Indefinite short circuit protection not guaranteed above 125°C (case)

6. Recovery and start-up times are measured from application of the transient or change in condition, to the point at which $\mathrm{V}_{\mathrm{OUT}}$ is within 1% of final value.

7. Response of either output with balanced loads simultaneously transitioned from 50% to 100% to 50%.

8. Step load transition test is performed at 10 microseconds typical.

- 9. Step line characterization test is performed at 100 microseconds ± 20 microseconds.
- 10. \pm 2 V step transients from Vin 35 to 37 up to 55 and the reverse for 55 to 35.

11. Tested on release from inhibit.

12. Applies to each output.

Page 9 of 35 SMHF42 Rev AG - 2021.04.06

35 TO 55 VOLT INPUT - 8 TO 15 WATT

DUAL OUTPUT MODELS		S	MHF4212	2D	SI	MHF421	5D	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+V _{OUT}	11.76	12.00	12.24	14.70	15.00	15.30	v
	-V _{OUT}	11.70	12.00	12.30	14.63	15.00	15.38	
OUTPUT CURRENT ²	EITHER OUTPUT	-	±0.625	0.875	—	±0.5	0.7	Α
V _{IN} = 35 TO 55 V	TOTAL	-	-	1.25	—	_	1.0	
OUTPUT POWER ²	EITHER OUTPUT	-	-	10.5	—	_	10.5	w
V _{IN} = 35 TO 55 V	TOTAL	-	-	15	—	_	15	
OUTPUT RIPPLE ± V _{OUT}	T _C = 25°C	_	30	95	—	30	95	
10 kHz - 2 MHz	T _C = -55°C TO +125°C	-	30	95	—	30	95	mV p-p
OUTPUT RIPPLE ± V _{OUT}	T _C = 25°C	-	30	110	_	30	110	
10 kHz - 10 MHz	T _C = -55°C TO +125°C	— —	30	110	_	30	110	mV p-p
LINE REGULATION ³	+V _{OUT}	_	2	30	_	2	30	
V _{IN} = 35 to 55 V	-V _{OUT}	—	10	100	_	10	100	mV
LOAD REGULATION ³	+V _{OUT}	— —	5	35	_	5	35	
NO LOAD TO FULL	-V _{OUT}	— —	60	150	_	40	150	mV
CROSS REGULATION ⁴	EFFECT ON -V _{OUT}	_	-	720	_	-	900	mV
INPUT VOLTAGE	CONTINUOUS	35	42	55	35	42	55	N
NO LOAD TO FULL	TRANSIENT 50 MS ¹	-	-	80	—	_	80	V
INPUT CURRENT	NO LOAD	-	30	50	—	30	50	
	INHIBITED	-	6	10	—	6	10	mA
INPUT RIPPLE CURRENT	10 KHZ - 10 MHZ	-	55	120	_	55	120	mA p-p
EFFICIENCY	T _C = 25°C	76	80	_	76	82	_	07
	T _C = -55°C TO +125°C	74	_	_	74	_	-	%
LOAD FAULT ^{5, 6}	POWER DISSIPATION	-	3	6	—	3	6	W
SHORT CIRCUIT	RECOVERY ¹	-	6	50	_	6	50	ms
STEP LOAD RESPONSE 6, 7, 8	TRANSIENT	— —	±300	±600	_	±300	±600	mV pk
50% - 100% - 50%	RECOVERY	_	90	400	_	90	400	μs
STEP LINE RESPONSE 1, 6, 9	TRANSIENT	-	±1	±5	_	±1	±5	%
\pm 2 V STEP TRANSIENT ¹⁰	RECOVERY	-	150	_	_	150	-	μs
STARTUP ^{6, 11}	DELAY	-	10	20	_	10	20	ms
	OVERSHOOT	0	100	500	0	100	500	mV pk
CAPACITIVE LOAD 1, 12	$T_{C} = 25 \degree C$	_	_	10	_	_	10	μF

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Up to 70% of the total output power is available from either output providing the opposite output is simultaneously carrying 30% of the total output power. Each output must carry a minimum of 30% of the total output power in order to maintain regulation on the negative output.

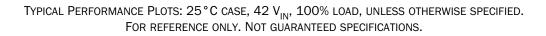
- 3. Balanced loads.
- 4. Effect on $-V_{OUT}$ for the following conditions: +P₀ = 50%, -P₀ = 10%; +P₀ = 10%, -P₀ = 50% +P₀ = 70%, -P₀ = 30%; +P₀ = 30%, -P₀ = 70% All conditions are referenced to balanced loads.

5. Indefinite short circuit protection not guaranteed above 125°C (case)

6. Recovery and start-up times are measured from application of the transient or change in condition, to the point at which $\mathrm{V}_{\mathrm{OUT}}$ is within 1% of final value.

7. Response of either output with balanced loads simultaneously transitioned from 50% to 100% to 50%.

8. Step load transition test is performed at 10 microseconds typical.

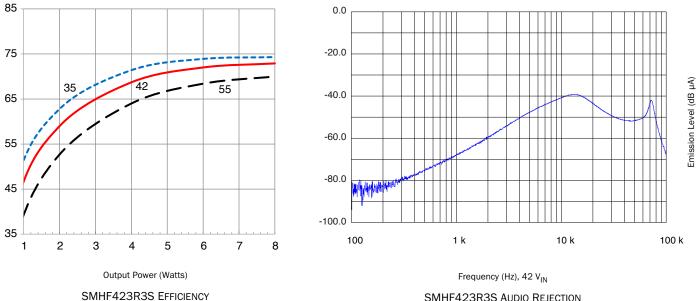
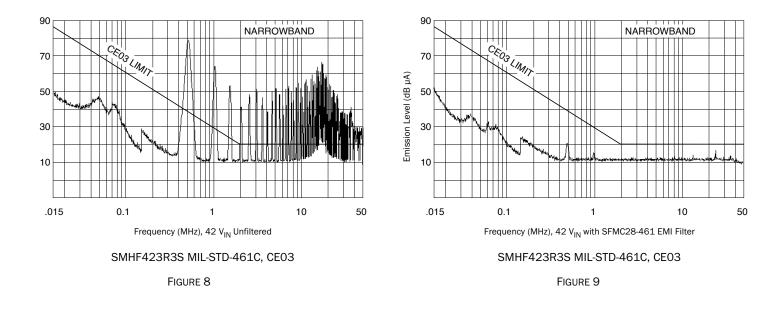

- 9. Step line characterization test is performed at 100 microseconds ± 20 microseconds.
- 10. \pm 2 V step transients from Vin 35 to 37 up to 55 and the reverse for 55 to 35.

11. Tested on release from inhibit.

12. Applies to each output.

Page 10 of 35 SMHF42 Rev AG - 2021.04.06

35 TO 55 VOLT INPUT - 8 TO 15 WATT

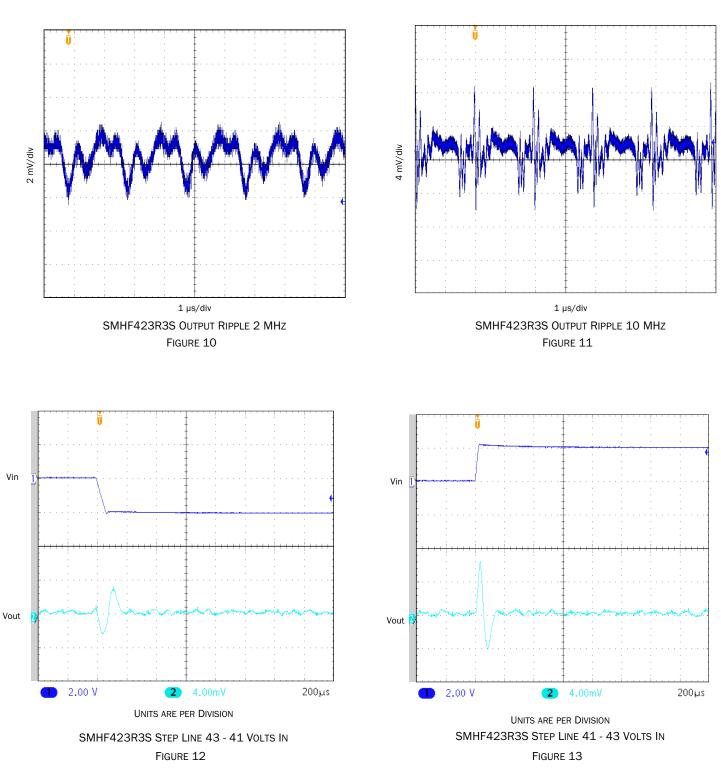
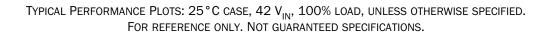
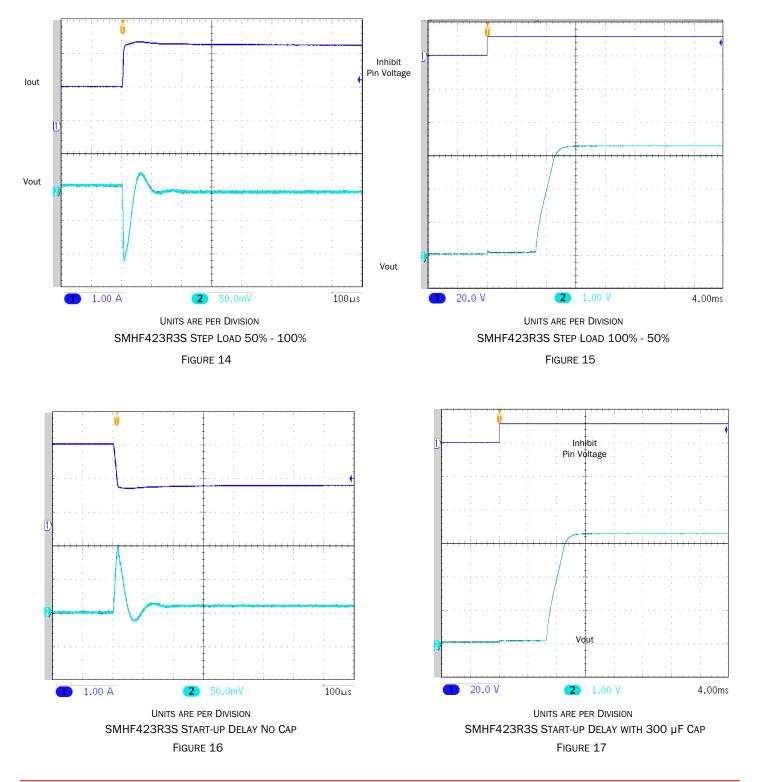

FIGURE 6

FIGURE 7

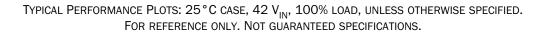
35 TO 55 VOLT INPUT - 8 TO 15 WATT

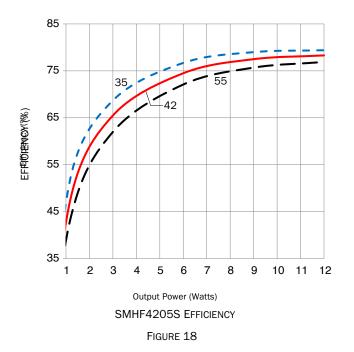

Typical Performance Plots: 25 °C case, $42 V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

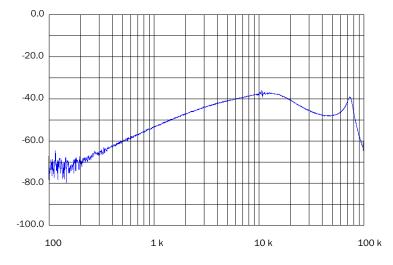

lout

Vout

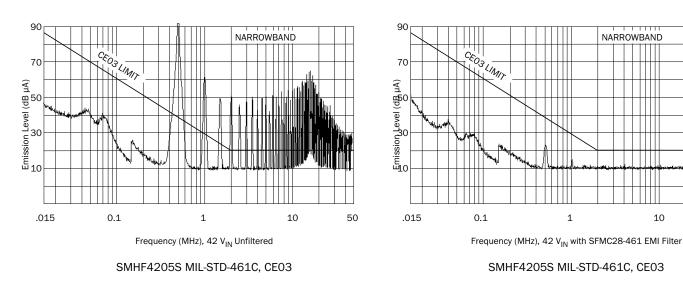
SMHF42 Single and Dual DC-DC Converters


35 TO 55 VOLT INPUT - 8 TO 15 WATT

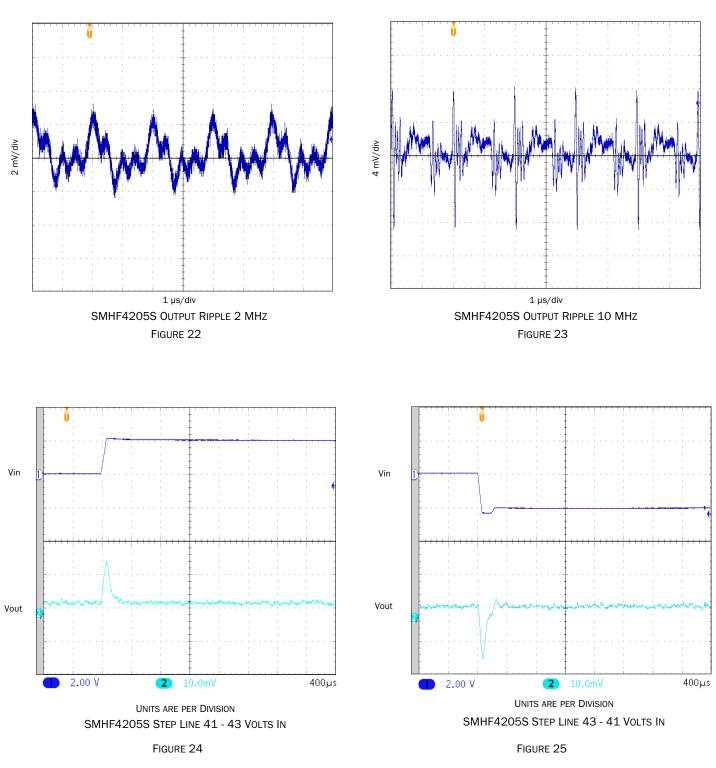




www.craneae.com/interpoint

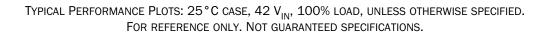

35 TO 55 VOLT INPUT - 8 TO 15 WATT

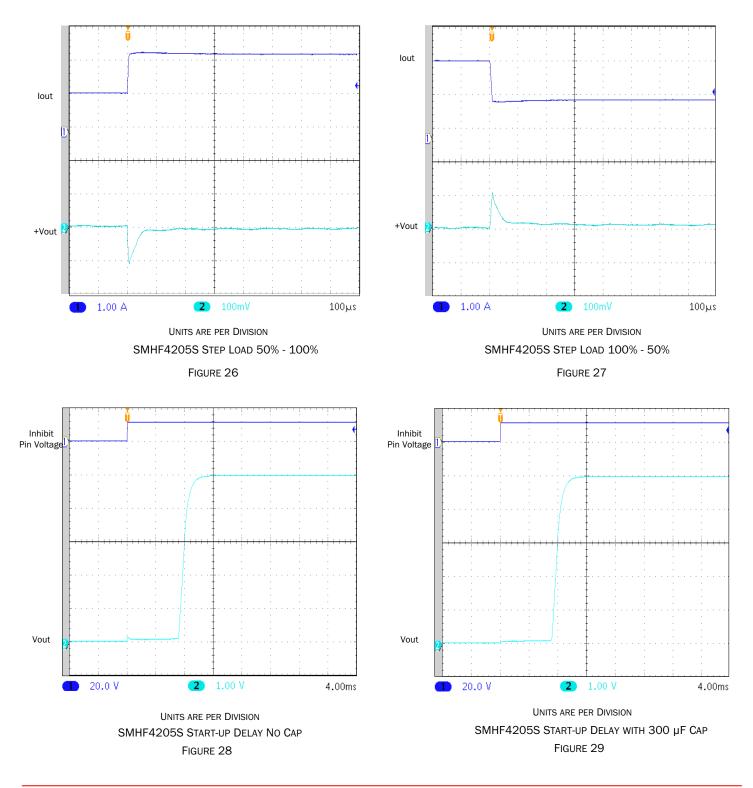
Frequency (Hz), 42 V_{IN} SMHF4205S AUDIO REJECTION FIGURE 19

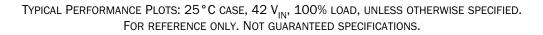


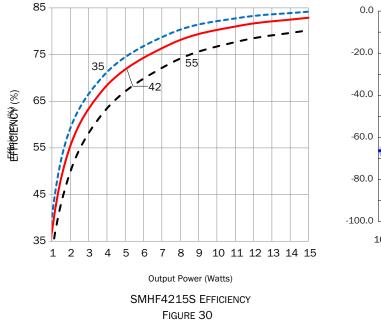
10

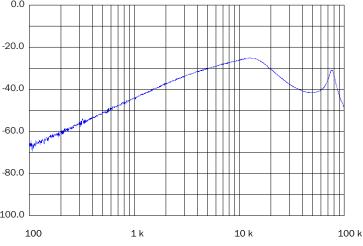
50

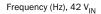

FIGURE 20

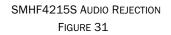

35 TO 55 VOLT INPUT - 8 TO 15 WATT

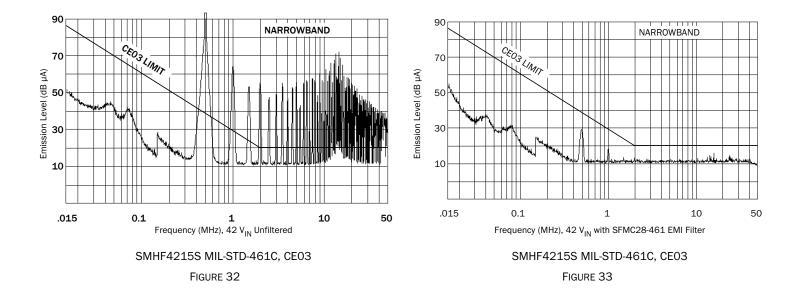

Typical Performance Plots: 25 °C case, $42 V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

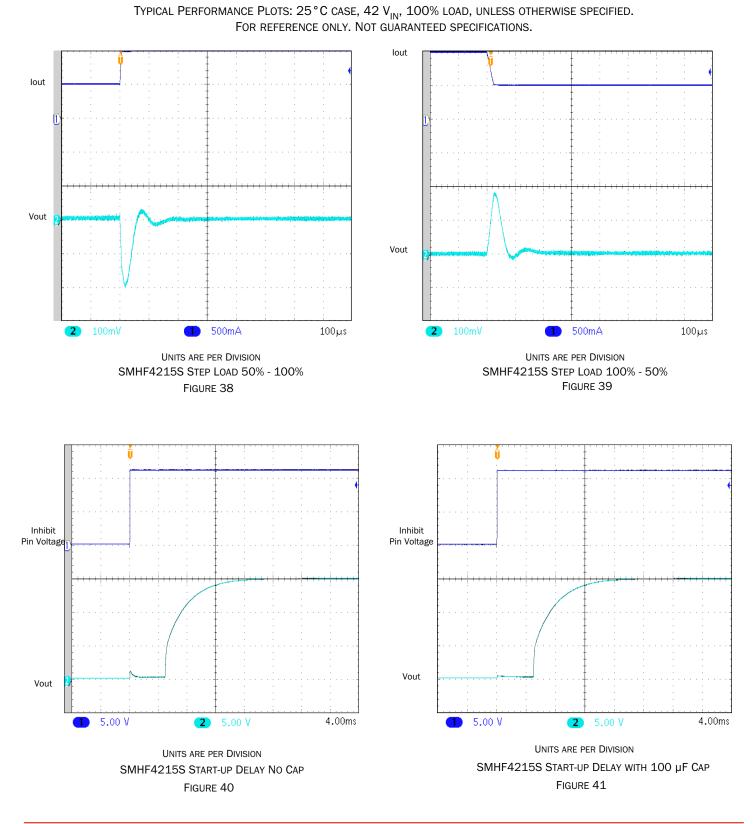

35 TO 55 VOLT INPUT - 8 TO 15 WATT



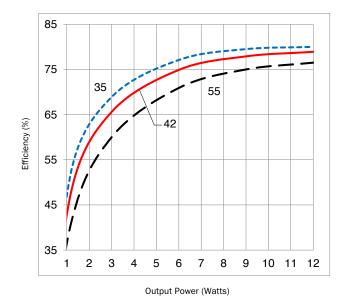



35 TO 55 VOLT INPUT - 8 TO 15 WATT




35 TO 55 VOLT INPUT - 8 TO 15 WATT

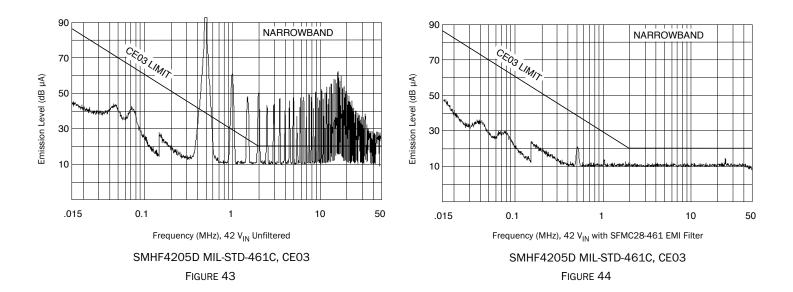
Typical Performance Plots: 25° C case, $42 V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.


www.craneae.com/interpoint

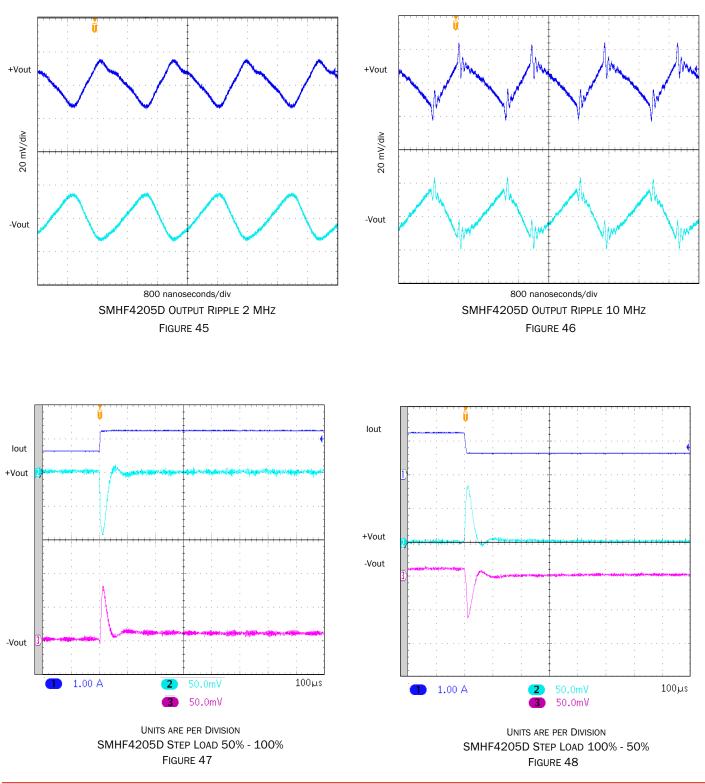
35 TO 55 VOLT INPUT - 8 TO 15 WATT

www.craneae.com/interpoint

35 TO 55 VOLT INPUT - 8 TO 15 WATT



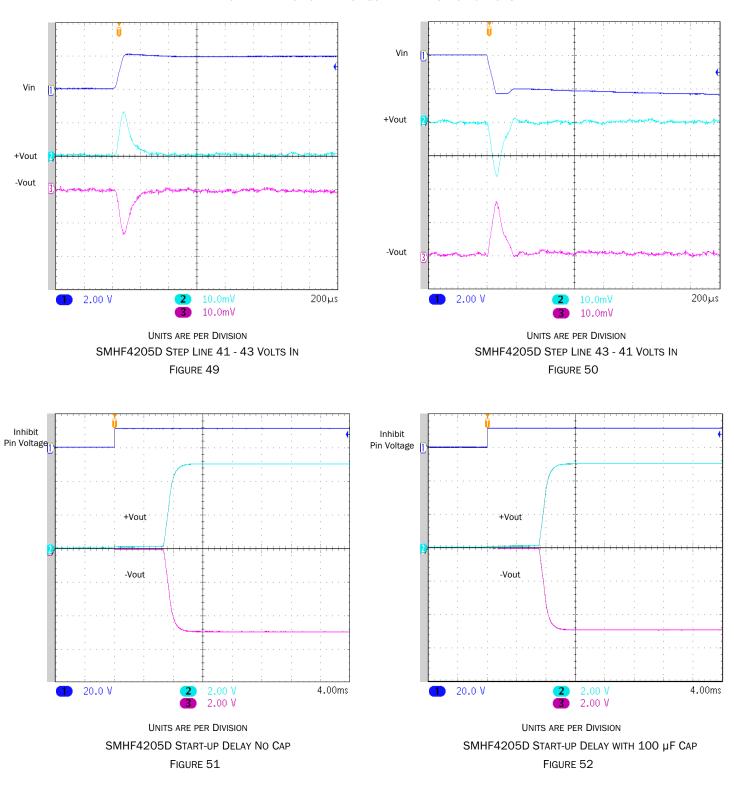
Typical Performance Plots: $25 \,^{\circ}$ C case, $42 \, V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.


SMHF4205D EFFICIENCY

TH 4203D LFFICE

FIGURE 42

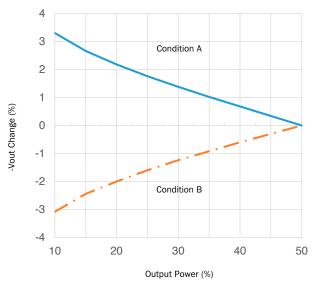
35 TO 55 VOLT INPUT - 8 TO 15 WATT



Typical Performance Plots: 25° C case, $42 V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

www.craneae.com/interpoint

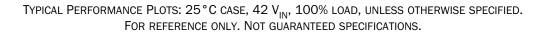
Page 21 of 35 SMHF42 Rev AG - 2021.04.06

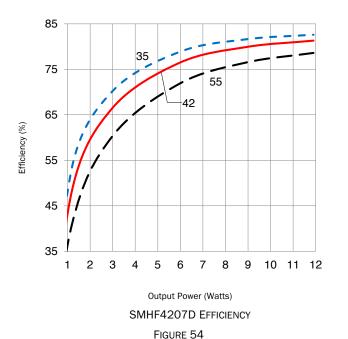

35 TO 55 VOLT INPUT - 8 TO 15 WATT

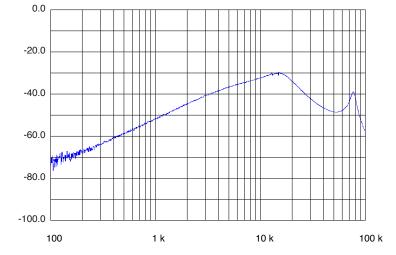
Typical Performance Plots: 25° C case, $42 V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

35 TO 55 VOLT INPUT - 8 TO 15 WATT

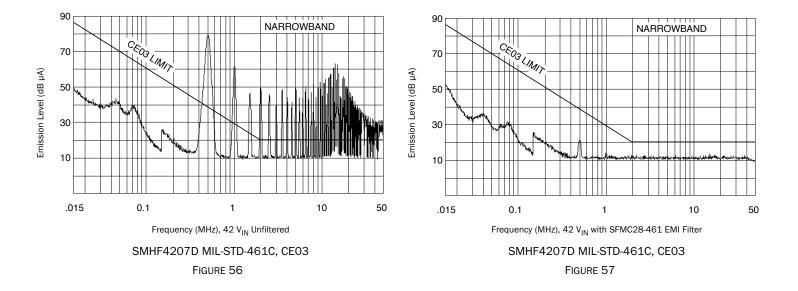
Typical Performance Plots: 25 °C case, 42 V_{IN}, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

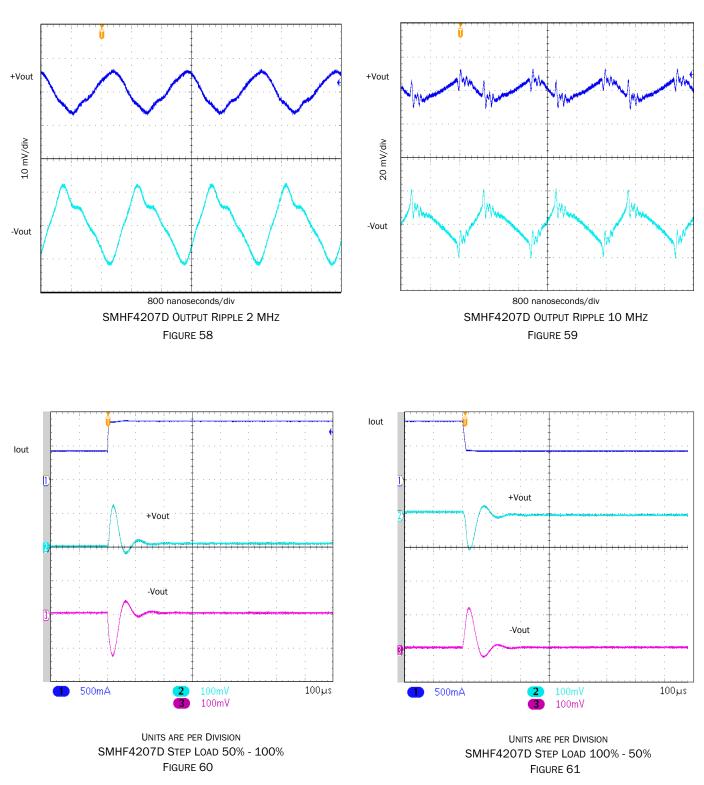

SMHF4205D CROSS REGULATION


FIGURE 53


Condition A: +Vout held at 50% load. -Vout 10 - 50% load sweep

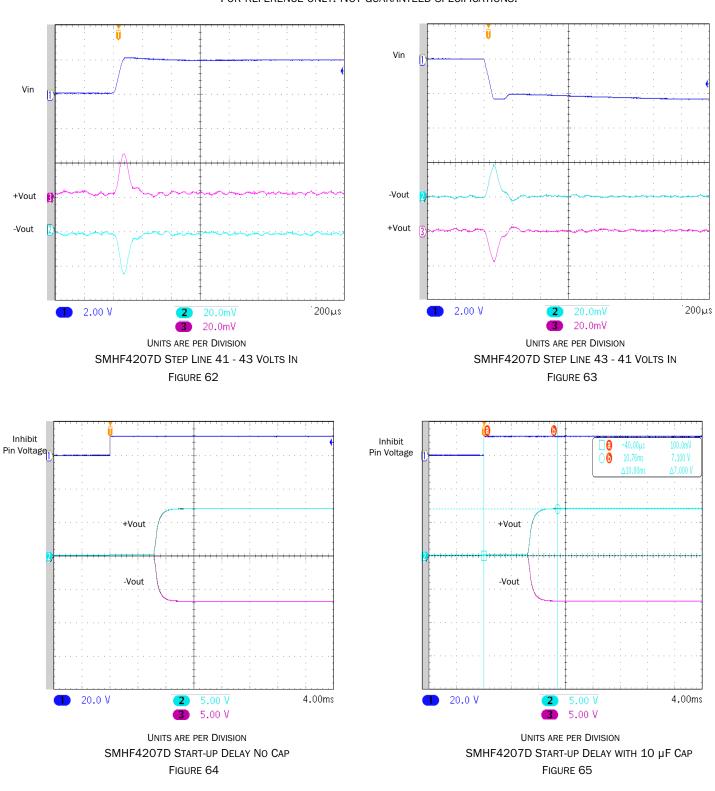
Condition B: -Vout held at 50% load. +Vout 10-50% load sweep


35 TO 55 VOLT INPUT - 8 TO 15 WATT



Frequency (Hz), 42 V_{IN} SMHF4207D AUDIO REJECTION FIGURE 55

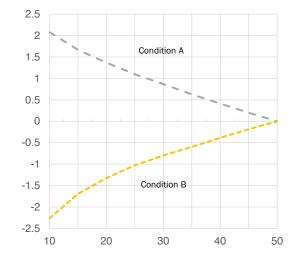
35 TO 55 VOLT INPUT - 8 TO 15 WATT



Typical Performance Plots: 25° C case, $42 V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

www.craneae.com/interpoint

Page 25 of 35 SMHF42 Rev AG - 2021.04.06

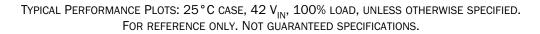

35 TO 55 VOLT INPUT - 8 TO 15 WATT

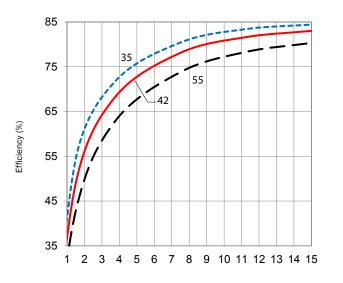
Typical Performance Plots: 25 °C case, 42 V_{IN}, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

35 TO 55 VOLT INPUT - 8 TO 15 WATT

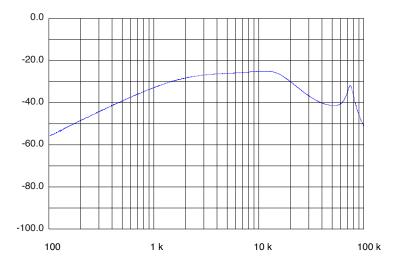
Typical Performance Plots: 25 °C case, $42 V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

Output Power (%)

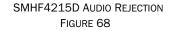

SMHF4207D CROSS REGULATION

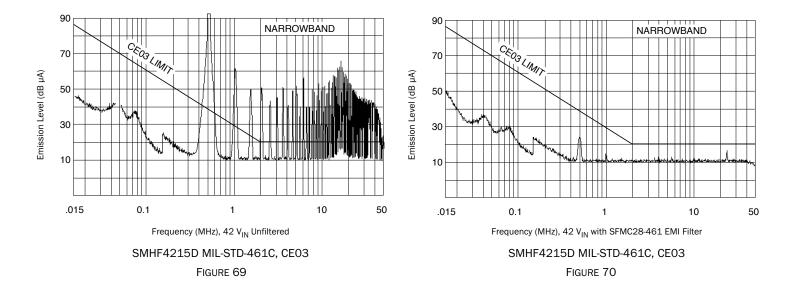

FIGURE 66

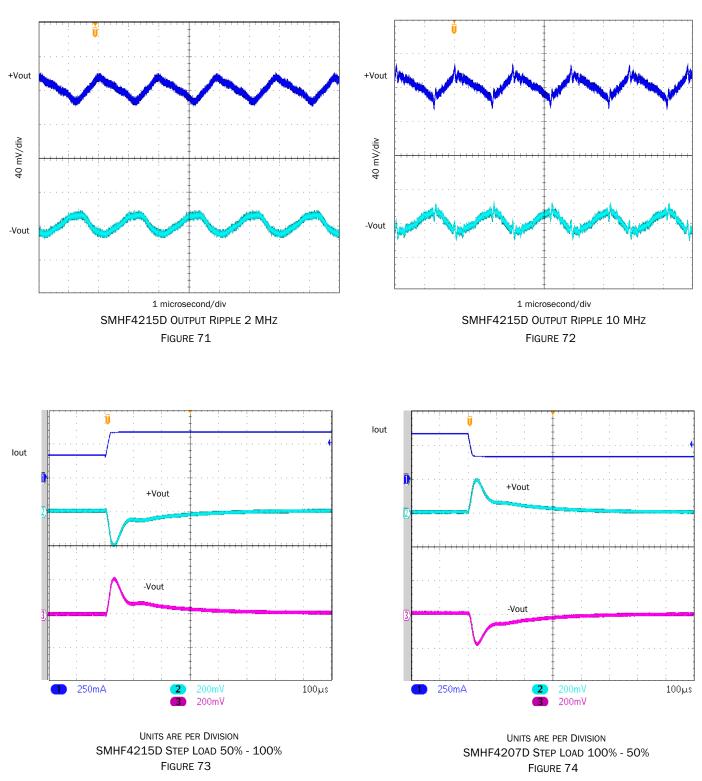
Condition A: +Vout held at 50% load. -Vout 10 - 50% load sweep


Condition B: -Vout held at 50% load. +Vout 10-50% load sweep

35 TO 55 VOLT INPUT - 8 TO 15 WATT

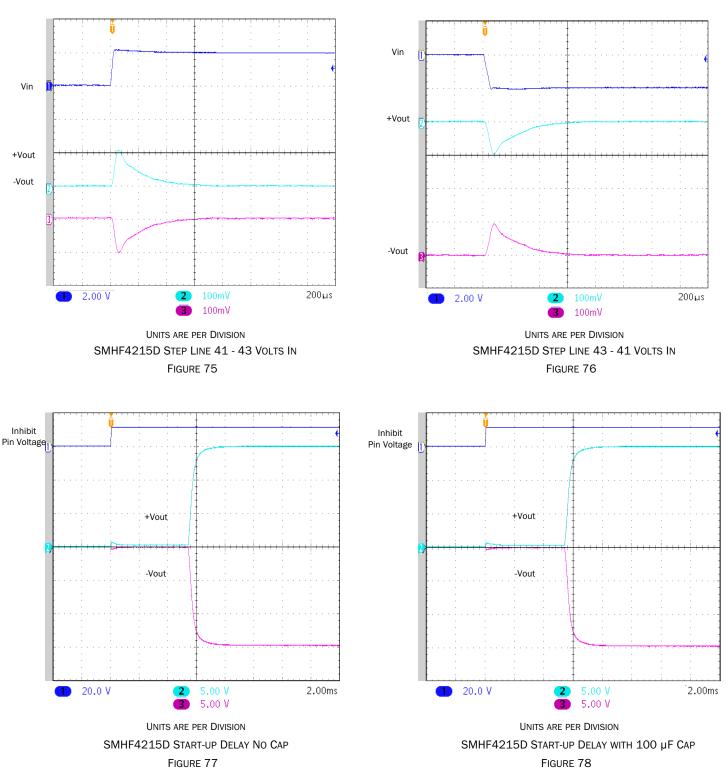






Frequency (Hz), 42 V_{IN}

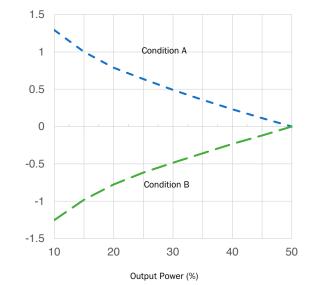
35 TO 55 VOLT INPUT - 8 TO 15 WATT



Typical Performance Plots: 25 °C case, $42 V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

www.craneae.com/interpoint

Page 29 of 35 SMHF42 Rev AG - 2021.04.06


35 TO 55 VOLT INPUT - 8 TO 15 WATT

Typical Performance Plots: 25° C case, $42 V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

35 TO 55 VOLT INPUT - 8 TO 15 WATT

Typical Performance Plots: 25 °C case, $42 V_{IN}$, 100% load, unless otherwise specified. For reference only. Not guaranteed specifications.

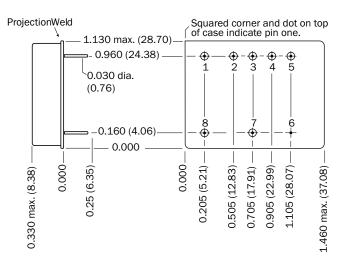

SMHF4215D CROSS REGULATION

FIGURE 79

Condition A: +Vout held at 50% load. -Vout 10 - 50% load sweep

Condition B: -Vout held at 50% load. +Vout 10-50% load sweep

35 TO 55 VOLT INPUT - 8 TO 15 WATT

BOTTOM VIEW CASE E1

Weight: 30 grams maximum

Case dimensions in inches (mm)

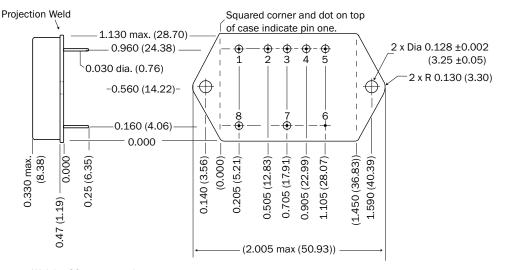
 $\begin{array}{l} \mbox{Tolerance } \pm 0.005 \; (0.13) \mbox{ for three decimal places} \\ \pm 0.01 \; (0.3) \mbox{ for two decimal places} \\ \mbox{ unless otherwise specified} \end{array}$

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300° C for 10 seconds per pin.

Materials

Header	Cold Rolled Steel/Nickel/Gold	
--------	-------------------------------	--


Cover Kovar/Nickel

Pins #52 alloy/Gold compression glass seal. Gold plating of 50 - 150 microinches included in pin diameter Seal Hole: 0.080 ±0.002 (2.03 ±0.05)

Please refer to the numerical dimensions for accuracy.

FIGURE 80: CASE E1

35 TO 55 VOLT INPUT - 8 TO 15 WATT

BOTTOM VIEW CASE G1

Flanged cases: Designator "F" required in Case Option position of model number

Weight: 30 grams maximum

Case dimensions in inches (mm) Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding $300\,^\circ$ C for 10 seconds per pin.

Materials

Header	Cold Rolled Steel/Nickel/Gold
Cover	Kovar/Nickel
Pins	#52 alloy/Gold compression glass seal
	Gold plating of 50 - 150 microinches included in pin diameter
	Seal Hole: 0.080 ±0.002 (2.03 ±0.05)

Please refer to the numerical dimensions for accuracy.

FIGURE 81: CASE G1

35 TO 55 VOLT INPUT - 8 TO 15 WATT

ELEMENT EVALUATION TABLES FOR QML PRODUCTS ARE IN "APP-009 QUALITY AND CERTIFICATION", APPENDIX A, IN COMPLIANCE WITH MIL-PRF-38534 REVISION L. (LINK HTTPS://WWW.CRANEAE.COM/QUALITY-ASSURANCE-MODULAR-POWER)

ENVIRONMENTAL SCREENING SPACE DC-DC CONVERTERS PROTOTYPE, CLASS H AND K

	NON-QML ¹	QML ^{2, 3}			
TEST PERFORMED	PROTOTYPE (/0) ⁴	CLASS H (/H)	CLASS K (/K)		
Non-destruct wire bond pull, Method 2023		■ 5			
Pre-cap Inspection, Method 2017, 2032					
Temperature Cycle (10 times)					
Method 1010, Cond. C, -65°C to +150°C, ambient					
Constant Acceleration					
Method 2001, 3000 g					
PIND, Test Method 2020, Cond. A		■ 5			
Pre burn-in test, Group A, Subgroups 1 and 4		■ 5			
Burn-in Method 1015, +125 °C case, typical ⁶					
96 hours	•				
160 hours					
2 x 160 hours (includes mid-BI test)					
Final Electrical Test, MIL-PRF-38534, Group A,					
Subgroups 1 and 4: +25°C case	•				
Subgroups 1 through 6, -55°C, +25°C, +125°C case					
Hermeticity Test, Method 1014					
Gross Leak, Cond. B ₂ , Kr85					
Gross Leak, Cond. C ₁ , fluorocarbon					
Fine Leak, Cond. B ₁ , Kr85					
Fine Leak, Cond. A ₂ , helium					
Radiography, Method 2012					
Post Radiography Electrical Test, +25°C case			∎ ⁵		
Final visual inspection					
Method 2009 of MIL-STD-883					
Magnification 1X ⁷					

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

- Non-QML prototype products may not meet all of the requirements of MIL-PRF-38534.
- 2. All processes are QML qualified and performed by certified operators.
- 3. Class H or K QML products that have no SMD number are marked "CHP, CHL, CHR,
- CKP, CKL or CKR" per MIL-PRF-38534, Table III instead of "QML". 4. "O" in the RHA designator position in Interpoint model numbers indicates DLA RHA "-"
- defined as no RHA.

5. Not required by DLA but performed to assure product quality.

- 6. Burn-in temperature designed to bring the case temperature to +125 $^\circ\text{C}$ minimum. Burn-in is a powered test.
- 7. Visual inspection is performed per an internal document. Product may contain cosmetic irregularities such as dents, dings, scratches, etc. that do not affect form, fit or function.

TABLE 10: ENVIRONMENTAL SCREENING SPACE DC-DC CONVERTERS PROTOTYPE, CLASS H AND K

35 TO 55 VOLT INPUT - 8 TO 15 WATT

SPACE RADIATION HARDNESS ASSURANCE DC-DC CONVERTERS CLASS H AND K, RHA¹ L AND R

	QML				
	CLASS H		CLASS K		
QUALIFICATION PER MIL-STD	/HL	/HR	/KL	/KR	
RHA L: 50 krad(Si) total dose ^{2, 3, 4}					
RHA R: 100 krad(Si) total dose ^{2, 3, 4}					
SEE, LET 86 MeV cm ² /mg ⁵					

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

- 1. DLA has approved the RHA plan for Interpoint power products. Our SMD products with RHA "L" or "R" code meet DLA requirements.
- Radiation sensitive components internal to the devices are procured with radiation guarantees or undergo radiation lot acceptance testing (RLAT) performed per condition A, method 1019 of MIL-STD-883.
- Representative converters were high dose rate (HDR) tested using condition A of method 1019 of MIL-STD-883 to 150 krad(Si) to ensure RHA designator level "R" (100 krad(Si)).
- Representative converters were low dose rate (LDR) tested using condition D of method 1019 of MIL-STD-883 to 100 krad(Si) to ensure RHA designator level "R" (100 krad(Si)).
- Single event testing was performed on a converter to 86 MeV-cm²/mg using 15 MeV/ nucleon gold ions with no latch-up, burn-out, functional interrupts, or gate ruptures exhibited. Single event upsets (output voltage transients) may be present up to 86 MeV-cm²/mg.

TABLE 11: SPACE RADIATION HARDNESS ASSURANCE DC-DC CONVERTERS CLASS H AND K, RHA L AND R

